Tetrahedron Letters 51 (2010) 5713-5717

journal homepage: www.elsevier.com/locate/tetlet

Contents lists available at ScienceDirect

Tetrahedron Letters

A novel strategy toward the synthesis of N-(p-glycosyl)asparagines based
on the alkylation of ethyl nitroacetate using N-(p-glycosyl)iodoacetamides

Katuri J. V. Paul, Laxminarayan Sahoo, Duraikkannu Loganathan *

Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India

ARTICLE INFO ABSTRACT

Article history:

Received 12 June 2010

Revised 18 August 2010
Accepted 21 August 2010
Available online 25 August 2010

Dedicated to Professor S. Govindarajan on

his 66th birthday conjugate.

Keywords:

N-Glycoproteins
Glycosylasparagine

Alkylation
N-(B-Glycosyl)iodoacetamides
Ethyl nitroacetate

Chiral organocatalyst
Diastereoselectivity

A conceptually novel strategy has been developed for the synthesis of N-(B-glycosyl)asparagine precursors
in good yield by the alkylation of ethyl nitroacetate using six per-O-acetylated N-(B-glycosyl)iodoaceta-
mides derived from mono- and disaccharides. The use of a chiral organocatalyst, N-(9-anthracenylmeth-
yl)cinchoninium chloride (10 mol %), resulted in diastereoselective alkylation up to 64% de. Single crystal
structure analysis of the purified major diastereomer of the Glc derivative revealed an absolute configura-
tion of S at the a-carbon of the monosubstituted ethyl nitroacetate which is a precursor of the L-asparagine
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Glycan components of glycoproteins play key roles in many bio-
logical processes.! In N-glycoproteins, the conserved pentasaccha-
ride core, Man3GIcNAC,, is linked to the side chain amide nitrogen
of Asn in the consensus sequence Asn-Xaa-Ser/Thr, where Xaa can
be any amino acid except Pro.>2 Owing to the microheterogeneity®
of the glycan chains that extend from the core, the expressed protein
is most often a mixture of various glycoforms. As a result, the eluci-
dation of structure-function correlations of glycoproteins has been a
formidable challenge to overcome. Glycopeptides constitute struc-
turally well-defined and homogeneous partial structures of glyco-
proteins and serve as valuable models for elucidating the functions
of glycan chains of glycoproteins. Realizing the need for preparing
structurally homogeneous glycopeptides in reasonable quantities
to address the above-mentioned challenge, a number of chemical
methods have been developed over the past several decades.* All
these methods essentially belong to two types of synthetic strate-
gies for the N-glycoamino acids and N-glycopeptides. The first one
more closely resembles the amide bond formation (Scheme 1, Path
A). The formation of the N-glycosidic bond has often been achieved
by the coupling of a glycosylamine® with an activated Asp derivative
that has been suitably protected to avoid side reactions. However,
aspartic acid residue of peptides easily undergoes cyclization to
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afford the unwanted aspartimide as a side product. In addition, gly-
cosylamines are relatively unstable resulting in not only anomeriza-
tion but also hydrolysis to the hemiacetal during the coupling
reaction.® These problems have been overcome to some extent by
the use of glycosylamine equivalents such as glycosyl isothiocya-
nates’ and glycosyl azides.® An alternative approach reported from
the laboratory of Fraser-Reid® involved the trapping of a p-nitrilium
ion, generated by the reaction of n-pentenyl 2-deoxy-2-acetamido-
3,4,6-tri-0O-acetyl-B-p-glucopyranoside with acetonitrile using NBS
as a promoter, with an aspartic acid derivative followed by selective
N-deacetylation using piperidine. The second strategy, based on the
biosynthesis of N-glycoproteins, involves N-glycosylation of
protected asparagine and Asn containing di- and tripeptides using
appropriately protected glycosyl trifluoroacetimidates as donors
and TMSOTTf as a catalyst (Scheme 1, Path B).!° The p-p-glucosyl
imidate with an acyl-protecting group at C2 position underwent
conversion to the corresponding N-(p-p-glycosyl)asparagine with
complete B-stereoselectivity in 98% yield, whereas the imidate
derived from N-Troc glucosamine was obtained in moderate yield.
The perbenzylated B-p-galactosyl trifluoroacetimidate, on the other
hand, furnished the corresponding N-(B-p-galactosyl)asparagine in
moderate yield and with poor B-selectivity (23%). Therefore, there
is a need to develop general, versatile, and efficient methodologies
for the synthesis of N-glycoamino acids and N-glycopeptides.

A conceptually novel strategy based on the retrosynthetic cleav-
age of C4—Cy bond (Scheme 1, Path C) was planned to be developed
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in the present work for the synthesis of N-glycoamino acids. To be-
gin with, ethyl nitroacetate and fully protected N-(B-glycosyl)chlo-
roacetamide were identified as synthons. The use of nitro group as
a latent functionality for the amino group has been well-known in
organic synthesis. However, this concept is yet to be exploited for
the synthesis of N-glycoamino acids. We reasoned that the newer
strategy would represent a general approach to glycoamino acid
synthesis, as the key reaction is essentially alkylation of active
methylene compounds. Furthermore, the newer strategy has the
inherent potential to afford either L- or p-asparagine conjugate by
the appropriate modulation of diastereoselectivity of alkylation
reaction. The current strategy also gains an advantage by employ-
ing fully protected N-(B-glycosyl)chlorocetamides'! as alkylating
agents, which are readily prepared, stable, and easy to handle crys-
talline solids unlike glycosylamines used in the above-mentioned
first strategy.

In order to facilitate the reaction at room temperature, fully
acetylated N-(B-glycosyl)iodoacetamides (1-6) were actually cho-
sen as facile-alkylating agents in the present work. These were pre-
pared in excellent yield (91-95%) from the corresponding fully
acetylated N-(p-glycosyl)chloroacetamides'! by the displacement
of chloride with iodide using KI in aqueous acetone at room tem-
perature. The only known iodoacetamide (4) derived from GIcNAc
was characterized based on the comparison of physical and spec-
tral data with those reported in the literature,'> whereas all the
other five hitherto unknown compounds, 1-3 and 5-6, were fully
characterized based on physical and spectral methods. The signal
assignable to the methylene carbon carrying the iodo group typi-
cally appears around —2.3 ppm in the '>C NMR spectra of these
iodoacetamido sugars, up-field shifted from that of the corre-
sponding chloroacetamido derivatives (seen at 42.2 ppm), and this
observation is consistent with the well-known heavy atom effect of
iodine.

The initial alkylation was performed by reacting per-O-acety-
lated N-(B-p-glucopyranosyl)iodoacetamide (1) with ethyl nitroace-
tate using K,COs as the base in dry DMF at room temperature
(Scheme 2).!* After complete consumption of the starting material

1in 6 h, the reaction mixture was worked-up and the crude product
obtained was purified by column chromatography to afford the de-
sired product 7 as a diastereomeric mixture in 62% yield. The 'H
NMR spectrum of 7 displayed a signal at 5.69 ppm, as a doublet of
doublets with the coupling constants of 3.6 and 10.8 Hz, assignable
to the o-hydrogen (CH proton) of one diastereomer of the monoalky-
lated ethyl nitroacetate. The CH proton signal of the other diastereo-
mer was seen at 5.59 ppm as a triplet with a coupling constant of
6.8 Hz. The diastereomeric composition was determined to be
55:45 based on the integral intensities of these two signals. The
signals of methylene protons adjacent to the above-mentioned CH
protons of the two diastereomers were seen as multiplets in the
range 3.26-3.12 and 3.09-2.97 ppm. This was confirmed by a pair
of cross peaks with the chemical shift co-ordinates of 5.69 ppm
and 3.19 ppm that established the spin connectivities between CH
proton and the methylene protons of one diastereomer in the
'H-'H gradient COSY spectrum. Similarly, another pair of cross
peaks with the chemical shift co-ordinates of 5.59 ppm and
3.04 ppm established the spin connectivities between CH proton
and the methylene protons of the other diastereomer.

Prompted by the recent progress in asymmetric alkylation,'* a
diastereoselective synthesis of per-O-acetylated N-(B-glyco-
syl)asparagine precursors was then explored. Anthracenylmethyl
ammonium salts derived from cinchonine and cinchonidine have
been shown to be useful chiral organocatalysts in the enantioselec-

Figure 1. Chiral organocatalysts derived from cinchonine (A) and cinchonidine (B).
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Table 1
Reaction of various per-O-acetylated N-(B-glycosyl)iodoacetamides with ethyl nitro-
acetate in the presence of chiral catalyst A

Entry Glycosyliodoacetamide Product dr? Yield® (%)
1 Glcp(1) 7 82:18 68
2 Galp(2) 8 69:31 52
3 Manp(3) 9 66:34 58
4 GIcNAcp(4) 10 62:38 59
5 1-Rhap(5) 11 62:38 56
6 CelloB(6) 12 66:34 55

2 Determined based on 'H NMR.
" Yield of isolated pure product.

tive alkylation of benzophenone-imine derived from tert-butyl
glycinate under phase-transfer conditions.!®> The feasibility of the
diastereoselective alkylation was first examined by reacting
N-(2,3,4,6-tetra-0O-acetyl-B-p-glucopyranosyl)iodoacetamide with
ethyl nitroacetate in the presence of K;COs3 as a base and N-(9-anth-
racenylmethyl)cinchoninium chloride (Fig. 1A) as the chiral catalyst
(10 mol %) at room temperature in dry DMF medium (Scheme 3).16
After 6 h of stirring, when the starting material disappeared, the
reaction mixture was worked-up. Column chromatography of the
crude product over silica gel afforded the desired product, 7, in 68
% yield. The diastereomeric ratio of the product (7) was determined
to be 82:18 based on '"H NMR as described earlier.

The generality of the above-described diastereoselective
alkylation was then examined by using several fully acetylated
N-(B-glycosyl)iodoacetamides (Table 1). All the six fully acetylated
N-(B-glycosyl)asparagine precursors (7-12) were obtained in fairly
good yields and characterized based on physical and spectral meth-
ods including two-dimensional NMR and high resolution ESI mass
spectrometry.!’? Compound 10 is the precursor of the GIcNAc-Asn
linkage conserved in all eukaryotic N-glycoproteins.'® Glc-Asn
and L-Rha-Asn linkages are rare and known to occur in glycoproteins
of Halobacter halobium'®® and Bacillus stearothermophillus,'
respectively. Compounds 7 and 11 would serve as useful precursors
for preparing such rare linkages. Besides these, the alkylation was

Table 2
Data collection and refinement parameters for 7

successful with the iodoacetamides derived from other monosac-
charides, Man, Gal and the disaccharide, cellobiose (affording the
interesting analog, 12, of chitobiosylasparagine), all in good yields
and with diastereoselectivity ranging from 24% to 64%.

Efforts undertaken to elucidate the absolute configuration of the
major diastereomer unambiguously based on X-ray diffractometry
proved to be fruitful. Satisfyingly, crystallization of 7 from a mix-
ture of ethyl acetate and hexane afforded single crystals. The crys-
tal structure of the major isomer 7 was solved in the orthorhombic
space group P2,2:2;. The relevant details of data collection and
refinement are given in Table 2. Analysis of the structure has
shown that the major isomer is the one having an absolute config-
uration of S at the a-carbon of the monosubstituted ethyl nitroac-
etate moiety, which is a precursor of the naturally occurring -
asparagine conjugate (Fig. 2). The pyranose ring exists in *C; con-
formation. The N-glycosidic torsion angle, ¢y, 05-C1-N1-C7,
was found to be 104.9°. The side chain dihedral angle, y,, N1-
C7-C8-C9, turned out to be 158.5° revealing the anti conformation.
A single hydrogen bond involving N1-H and O8 stabilizes the
molecular packing in the crystal. The monoalkylated product 10
derived from N-(B-bp-2-acetamido-2-deoxy-3,4,6-tri-O-acetyl-glu-
copyranosyl)iodoacetamide was also subjected to recrystallization.
The diastereomeric ratio of the twice recrystallized product was
estimated to be 94:6 based on 'H NMR.!”® However, efforts made
to get a single crystal of this twice recrystallized product for X-
ray crystallographic analysis proved in vain.

The use of cinchonidine-derived ammonium salt ( Fig. 1B,
10 mol %), a pseudoenantiomer of the chiral catalyst A, in the reac-
tion of fully acetylated N-(B-p-glucopyranosyl)iodoacetamide with
ethyl nitroacetate also afforded 7 as a mixture of diastereomers in
66 % yield with a composition of 78:22, estimated based on its 'H
NMR data. Crystallization of this mixture from a mixture of ethyl
acetate and hexane afforded single crystals of the major isomer in
pure form, which was confirmed by X-ray crystallographic analysis
to be structurally identical with the same stereoisomer obtained
from the earlier reaction catalyzed by N-(9-anthracenylmeth-
yl)cinchoninium chloride (Fig. 1A).

Parameter Compound 7

Parameter Compound 7

Empirical formula
Formula weight
Wavelength (A)

C20H25N2014
520.44
0.71073

P212424, orthorhombic
a=8.1416(3) A
b=11.5681(6) A
c=27.0124(15) A

Crystal system space group
Unit cell dimensions

=90

B=90

7 =90
Volume (A3) 2544.1(2)
Absorption coefficient (mm™') 0.117

F(000) 1096

Crystal size (mm) 0.3 x02x0.2
Theta range for data collection (°) 2-18

Reflections collected/unique 6288/6288
[R(int) = 0.0892]
Data restraint parameters 6288/0/329
Index ranges —-10<h<8
-15<k<15
—28<1<36
Final R indices [2<sigma> (I)] R, =0.0650
WR, =0.1330
R indices (all data) R;=0.2398
WR, =0.1932
Goodness-of-fit on F? 0.902
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Figure 2. ORTEP with atom numbering of the major isomer of compound 7.

To conclude, a newer and general synthetic strategy for N-(B-
glycosyl)asparagine precursors has been developed based on the
alkylation of ethyl nitroacetate using six different per-O-acetylated
N-(B-glycosyl)iodoacetamides in good yield and with moderate
diastereoselectivity. There is scope for improving the diastereose-
lectivity by screening a large number of newly emerging organo-
catalysts. Modulation of diastereoselectivity would enable the
conjugation of the sugar to either L- or p-asparagine precursor thus
facilitating the synthesis of natural as well as unnatural glycoami-
noacids and glycopeptides.

X-ray crystallographic data: Crystallographic data (excluding
structure factors) for the structures in this letter have been depos-
ited with the Cambridge Crystallographic Data Centre as supple-
mentary publication number CCDC 780295. Copies of the data
can be obtained, free of charge, on application to CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK, (fax: +44 (0)1223 336033 or e-mail:
deposit@ccdc.cam.ac.Uk).
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